Cytokinetics, Incorporated (Nasdaq: CYTK) today announced that
additional analyses synthesizing data from SEQUOIA-HCM
(
Safety,
Efficacy, and
Quantitative
Understanding of
Obstruction
Impact of
Aficamten in
HCM), the pivotal
Phase 3 clinical trial of aficamten in patients with symptomatic
obstructive hypertrophic cardiomyopathy (HCM), were presented
virtually at the Heart Failure Society of America (HFSA) Annual
Scientific Meeting by Martin Maron, M.D., Director of the
Hypertrophic Cardiomyopathy Center at the Lahey Hospital and
Medical Center. The presentation was simultaneously published in
the Journal of the American College of Cardiology1.
In these responder analyses of data from
SEQUOIA-HCM, key integrated clinical assessments, commonly
relied upon by practicing cardiologists to inform treatment choice
and response, were analyzed following 24 weeks of treatment
with aficamten or placebo (in addition to standard of
care in both cases) in the study population (n=282): 1) complete
hemodynamic response (resting and Valsalva left ventricular outflow
tract gradient [LVOT-G] <30 mmHg and <50 mmHg, respectively),
2) relief of symptoms (≥1 change in New York Heart Association
[NYHA] Functional Class and/or ≥10-point increase in the Kansas
City Cardiomyopathy Questionnaire Clinical Summary Score
[KCCQ-CCS]), 3) enhanced exercise capacity (≥1.5 mL/kg/min change
in peak oxygen uptake [pVO2]), and 4) cardiac biomarker response
(≥50% reduction in NT-proBNP).
Comparing patients treated with aficamten to
placebo, 68% vs 7% demonstrated a complete hemodynamic response,
71% vs 42% experienced relief of limiting symptoms, 46.5% vs 24%
showed enhanced exercise capacity and 84% vs 8% demonstrated a
substantial response in cardiac biomarkers (for all p<0.002
compared to placebo). Overall, 97% of patients treated with
aficamten achieved one or more clinically relevant outcomes, 62%
achieved at least three outcomes and 23% achieved all four
outcomes. For each of the four outcomes assessed in these analyses,
the number needed to treat (NNT) was fewer than 5 patients.
In a responder analysis of functional capacity
(defined as pVO2 ≥1.5 mL/kg/min and ≥1 improvement in NYHA class,
or pVO2 ≥3.0 mL/kg/min2 and no worsening in NYHA class), 42% of
patients on aficamten and 14% of patients on placebo were
responders, for a difference vs. placebo of 29% (95% CI: 18.8 -
38.6, p<0.001) and an NNT of 3. Additionally, among patients
treated with aficamten who were eligible for septal reduction
therapy at baseline (n=32), 88% were no longer eligible at 24 weeks
(p=0.002 compared to placebo).
“In these prespecified analyses of SEQUOIA-HCM
the addition of aficamten to standard of care was associated with
important improvements in four key clinical markers used by
cardiologists to inform HCM patient management strategies and
prognosis. Included in these assessments are a complete hemodynamic
response which was demonstrated in two-thirds of the patients in
SEQUOIA-HCM,” said Stephen Heitner, M.D., Vice President, Head of
Clinical Research. “These data elaborate on the primary results
from SEQUOIA-HCM and further inform the relevance to clinical
practice of aficamten as a next-in-class cardiac myosin inhibitor
for adult patients with obstructive HCM.”
About
Aficamten
Aficamten is an investigational selective, small
molecule cardiac myosin inhibitor discovered following an extensive
chemical optimization program that was conducted with careful
attention to therapeutic index and pharmacokinetic properties and
as may translate into next-in-class potential in clinical
development. Aficamten was designed to reduce the number of active
actin-myosin cross bridges during each cardiac cycle and
consequently suppress the myocardial hypercontractility that is
associated with hypertrophic cardiomyopathy (HCM). In preclinical
models, aficamten reduced myocardial contractility by binding
directly to cardiac myosin at a distinct and selective allosteric
binding site, thereby preventing myosin from entering a force
producing state.
The development program for aficamten is
assessing its potential as a treatment that improves exercise
capacity and relieves symptoms in patients with HCM as well as its
potential long-term effects on cardiac structure and function.
Aficamten was evaluated in SEQUOIA-HCM (Safety,
Efficacy, and Quantitative
Understanding of Obstruction
Impact of Aficamten in
HCM), a positive pivotal Phase 3 clinical trial in
patients with symptomatic obstructive hypertrophic cardiomyopathy
(HCM). Aficamten received Breakthrough Therapy Designation for the
treatment of symptomatic obstructive HCM from the U.S. Food &
Drug Administration (FDA) as well as the National Medical Products
Administration (NMPA) in China.
Aficamten is also currently being evaluated
in MAPLE-HCM, a Phase 3 clinical trial of aficamten as
monotherapy compared to metoprolol as monotherapy in patients with
obstructive HCM, ACACIA-HCM, a Phase 3 clinical trial
of aficamten in patients with non-obstructive HCM, and
CEDAR-HCM, a clinical trial of aficamten in a pediatric
population with obstructive HCM, and FOREST-HCM, an open-label
extension clinical study of aficamten in patients with
HCM.
About Hypertrophic
Cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a disease
in which the heart muscle (myocardium) becomes abnormally thick
(hypertrophied). The thickening of cardiac muscle leads to the
inside of the left ventricle becoming smaller and stiffer, and thus
the ventricle becomes less able to relax and fill with blood. This
ultimately limits the heart’s pumping function, resulting in
reduced exercise capacity and symptoms including chest pain,
dizziness, shortness of breath, or fainting during physical
activity. HCM is the most common monogenic inherited cardiovascular
disorder, with approximately 280,000 patients diagnosed, however,
there are an estimated 400,000-800,000 additional patients who
remain undiagnosed in the U.S.2,3,4 Two-thirds of patients with HCM
have obstructive HCM (oHCM), where the thickening of the cardiac
muscle leads to left ventricular outflow tract (LVOT) obstruction,
while one-third have non-obstructive HCM (nHCM), where blood flow
isn’t impacted, but the heart muscle is still thickened. People
with HCM are at high risk of also developing cardiovascular
complications including atrial fibrillation, stroke and mitral
valve disease.5 People with HCM are at risk for potentially fatal
ventricular arrhythmias and it is one of the leading causes of
sudden cardiac death in younger people or athletes.6 A subset of
patients with HCM are at high risk of progressive disease leading
to dilated cardiomyopathy and heart failure necessitating cardiac
transplantation.
About Cytokinetics
Cytokinetics is a late-stage, specialty
cardiovascular biopharmaceutical company focused on discovering,
developing and commercializing muscle biology-directed drug
candidates as potential treatments for debilitating diseases in
which cardiac muscle performance is compromised. As a leader in
muscle biology and the mechanics of muscle performance, the company
is developing small molecule drug candidates specifically
engineered to impact myocardial muscle function and contractility.
Cytokinetics is preparing for regulatory submissions for aficamten,
its next-in-class cardiac myosin inhibitor, following positive
results from SEQUOIA-HCM, the pivotal Phase 3 clinical trial in
obstructive hypertrophic cardiomyopathy which were published in the
New England Journal of Medicine. Aficamten is also currently being
evaluated in MAPLE-HCM, a Phase 3 clinical trial of aficamten as
monotherapy compared to metoprolol as monotherapy in patients with
obstructive HCM, ACACIA-HCM, a Phase 3 clinical trial of aficamten
in patients with non-obstructive HCM, CEDAR-HCM, a clinical trial
of aficamten in a pediatric population with obstructive HCM, and
FOREST-HCM, an open-label extension clinical study of aficamten in
patients with HCM. Cytokinetics is also developing omecamtiv
mecarbil, a cardiac muscle activator, in patients with heart
failure. Additionally, Cytokinetics is developing CK-586, a cardiac
myosin inhibitor with a mechanism of action distinct from aficamten
for the potential treatment of HFpEF.
For additional information about Cytokinetics,
visit www.cytokinetics.com and follow us on X, LinkedIn, Facebook
and YouTube.
Forward-Looking Statements
This press release contains forward-looking
statements for purposes of the Private Securities Litigation Reform
Act of 1995 (the “Act”). Cytokinetics disclaims any
intent or obligation to update these forward-looking statements and
claims the protection of the Act’s Safe Harbor for forward-looking
statements. Examples of such statements include, but are not
limited to, statements express or implied relating to the
properties or potential benefits of aficamten or any of our other
drug candidates, our ability to obtain regulatory approval for
aficamten for the treatment of obstructive hypertrophic
cardiomyopathy or any other indication from FDA or any other
regulatory body in the United States or abroad, and the labeling or
post-marketing conditions that FDA or another regulatory body may
require in connection with the approval of aficamten. Such
statements are based on management’s current expectations, but
actual results may differ materially due to various risks and
uncertainties, including, but not limited to the risks related to
Cytokinetics’ business outlines in Cytokinetics’ filings with
the Securities and Exchange Commission. Forward-looking
statements are not guarantees of future performance, and
Cytokinetics’ actual results of operations, financial condition and
liquidity, and the development of the industry in which it
operates, may differ materially from the forward-looking statements
contained in this press release. Any forward-looking statements
that Cytokinetics makes in this press release speak only
as of the date of this press
release. Cytokinetics assumes no obligation to update its
forward-looking statements whether as a result of new information,
future events or otherwise, after the date of this press
release.
CYTOKINETICS® and the C-shaped logo are
registered trademarks of Cytokinetics in the U.S. and certain other
countries.
Contact:Cytokinetics Diane WeiserSenior Vice
President, Corporate Affairs(415) 290-7757
References:
- Maron M, et al. Impact of Aficamten on Disease and Symptom
Burden in Obstructive Hypertrophic Cardiomyopathy: Results from
SEQUOIA-HCM. JACC. 2024.
- CVrg: Heart Failure 2020-2029, p 44; Maron et al. 2013 DOI:
10.1016/S0140-6736(12)60397-3; Maron et al 2018
10.1056/NEJMra1710575
- Symphony Health 2016-2021 Patient Claims Data DoF;
- Maron MS, Hellawell JL, Lucove JC, Farzaneh-Far R, Olivotto I.
Occurrence of Clinically Diagnosed Hypertrophic Cardiomyopathy in
the United States. Am J Cardiol. 2016; 15;117(10):1651-1654.
- Gersh, B.J., Maron, B.J., Bonow, R.O., Dearani, J.A., Fifer,
M.A., Link, M.S., et al. 2011 ACCF/AHA guidelines for the diagnosis
and treatment of hypertrophic cardiomyopathy. A report of the
American College of Cardiology Foundation/American Heart
Association Task Force on practice guidelines. Journal of the
American College of Cardiology and Circulation, 58, e212-260.
- Hong Y, Su WW, Li X. Risk factors of sudden cardiac death in
hypertrophic cardiomyopathy. Current Opinion in Cardiology. 2022
Jan 1;37(1):15-21
Cytokinetics (NASDAQ:CYTK)
Gráfico Histórico do Ativo
De Dez 2024 até Jan 2025
Cytokinetics (NASDAQ:CYTK)
Gráfico Histórico do Ativo
De Jan 2024 até Jan 2025